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Abstract

A critical set is a partial latin square which is completable to a latin square
and omitting any entry of the partial latin square destroys this property. The
size of a critical set is the number of entries in the partial latin square, and
a critical set with minimum (maximum) size is called a minimal (maximal)
critical set. In this paper, we study the minimal and maximal critical sets, and
some results are obtained. Mainly, we prove that every minimal critical set in &
latin square of order n has size at least n+ 1. Also, we show that the maximal
critical set of a latin square of order 2" — 1 contains at least 4™ — 3™ — 2"+ +3
entries. -

1 Introduction

A latin square of order n is an nx array with entries in N = {1,2,...,n} such that
each element of N occurs in each row and each column exactly once. A partial latin
. square of order n is an n x n array such that each element of N occurs at most once in
each row and at most once in each column. A critical set in a latin square L of order
n, is a set A = {(4,7;k) | 4,7,k € N} such that, L is the only latin square of order
n which has element k in position (¢, ) for each (3,7; k) € A, and no proper subset
of A satisfies the above property. The size of a critical set A is |A| and a critical set
with minimum (maximum) size is called a minimal (maximal) critical set.

In [3], Lemma 2.3, Curran and van Rees showed that, if you take the ordered
triples (x,y;z) of a critical'set, then the i** component.of these triples, i = 1,2,3,
must cover at least n — 1 of the values 1,2;...,n, thereby showing that the size of
the minimal critical set is no less than n — 1. Later, in [4], Lemma 3.1, Donovan et.
al. improved this bound to n for each n > 4. In this paper, we shall prove that the
size of a minimal critical set is at least n + 1 for each n > 5. Note that this result is
also obatined in [2] by a different method.

As to the maximal critical sets, it was shown by Stinson and van Rees [6] that the
maximal critical set of a latin square of order 2" contains at least 4™ — 3" entries. In
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~ section 3, we shall use a special construction to prove that the maximal critical set
of a latin square of order 2" — 1 contains at least 4™ — 3" — 2™ + 3 entries.

2 Minimal critical set

Two latin squares are isotopic, if one can be transformed onto the other by permuting
rows, permuting columns and renaming the entries. Thus two partial latin squares
L and L' are isotopic if there exists an ordered triple («, 8,) of permutations such
that L(i, ), the (3,7) position in L, is k if and only if L'(ic, j5) = k. In particular,
two critical sets C and C’ are said to be isotopic if they are isotopic as two partial
latin squares. Then the following result is easy to see.

Lemma 2.1 ({4]) Let C be a critical set in a latin square L. Let (o, 5,7)be an
isotopism from the critical set C onto C'. Then C’ is a critical set in the latin square
L' obtained from L by applying the isotopism (a, §3,7).

In order to obtain the lower bound for the minimal critical sets in a latin square,
we shall rely on the following result.

Theorem 2.2 (L. D. Anderson [1]) A partical latin square of order n with size
at most n+ 1 can be completed to a latin square if it doesn’t contain a partial latin
square as in Figure 1 (Appendiz).

Theorem 2.3 Let A be a critial set in a latin square of ordern > 5, ‘then {A] >
n+1. )

Proof. Assume that A is a critical set and |A] < n. We shall claim that there
exists a position not in A which we can choose two elements in N = {1,2,...,n} to
fill in respectively, and both can be completed to a latin square. This implies that A
is not a critical set and thus |A| must be at least n + 1.

Let L be a latin square of order n. If n cells which jointly contain at least n — 1
different symbols occupy at least n — 1 rows and n — 1 columns of L, then there
exists at most one row and/or column which contains two of the cells. In this one
row and/or column (if such exists), the entries are distinct so the entries in the cells
of the remaining n — 2 rows/columns use at least n — 3 distinct symbols.

If they use n — 2 distinct symbols, then they form a partial transversal of n — 2
cells. If they use n — 3 distinct symbols, then in the exceptional row/column which
contains two of the cells, there is a cell whose entry is distinct from the 7 — 3 symbols,
so again we can find a partial transversal of length n — 2.

By the result of Donovan et. al. in [4], we may suppose that |A] = n, and also the
arguments are up to isotopisms. Since the position in A will occur in at least n — 1
rows and n — 1 columns, and the entries occur in A should contain at least n — 1
elements of N. By above discussion, we may assume that the triples in'A by (4,1; 1),
fori=1,2,...,n—2,(n—1,n—1;z) and (a,b;y) wherez =n—1ory=n—1. Now
let (c,d) be a position not in A and ¢ # n—1,d # n—1. If n > 5, then there are least
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two elements ¢; and ¢, in N which do not occur in the c** row and d* column of the
partial latin square. Now let (¢, d) be filled with ¢; and ¢; respectively, and we obtain
A, and Aj respectively. Clearly, A, and A; are two distinct partial latin squares of
size n+1, and A, and A2 do not contain any type of partial latin square in Figure 1.
This implies that by Theorem 2.2, A; and A, can be completed respectively. Thus
we have the claim and the proof. &

3 Maximal critical set

A latin square L = [L(%, j)] of order n is idempotent if L(i,1) = i for each 4, unipotent
if L(4,%) = ¢ where c is a constant, and commutative if L(i,5) = L(4,%) for all 1, j.
A quasigroup satisfying the Steiner identities: z? = z, z(zy) = y and (yz)z = y, is
called a Steiner quasigroup. From the definition of Steiner quasigroup, we know that
a latin squre obtained by a Steiner quasigroup is idempotent and commutative. Let
(P, *) be a Steiner quasigroup of order v > 3 and p, g € P. Then (P,*) contains the
following subquasigroup.
+ | P g pxgq
P p p*q ¢
q |p*q q p
P*q| ¢ P pxq
The following result is easy to see.

Lemma 3.1 Let L be a latin square obtained by a Steiner quasigroup. Then any
tow distinct elements in L are contained in ezactly one latin subsquare of order 3.

Stinson and von Rees [6] defined the double of a latin square L and a critical set
Cin L,2% L and 2 * C, as follows:

Ll L2 2*C= Ll C2

2xL=1T.1%, GG

where L; and C; (i = 1,2) is a copy of L and C respectively, with every symbol z
in L replaced by z;. At the same time they showed that if C is a critical set in L,
then 2 C is a critical set in 2% L. Thus a critical set of the latin square representing
2-group of order 2" can be constructed by above method. Therefore we have the
following theorem.

Theorem 3.2 ([6]) The mazimal critical set of latin squares of order 2™ contains
at least 4™ — 3" elements.

Instedad of prolongation [5], we will use a compression to obtain a latin square of
order 2" — 1 from the latin square of order 2.

Let L = [L(3,7)] be the latin square representing 2-group of order 2" based on
{1,2,...,2"}. Let M = [M(4,5)] be an array constructed by replacing the diagonal
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entries of L with the 1% row of L, and taking away its 1° column and 1° row. That
~ is for each 4,7 in {1,2,...,2" — 1} ‘

M(i,i) = L(1,i+ 1), and

M(i,5)=L(i+ 1,7+ 1), for i # j.
Then M has the following properties:

(1) M is an idempotent latin square of order 2" — 1 based on {2,3,...,2"}. (Since L
is unipotent and commutative, and its 1% row is 1,2,3,...,2")
(2) M determines a Steiner quasigroup.

Let z and y be two distinct elements in {2,3,...,2"}. fxz*y = 2in M, then L
contains the following partial latin square.

1

N~ 8
el o~

T
Yy
z 1
Since L is the latin square representing 2-group, any two entries filled the same
element are contained in a latin subsquare of order 2. Thus z* 2 =y and y * 2 = .
Therefore M is a Steiner quasigroup.
The following example explains the above idea.

L M
1 23 45 6 7 8
2 4 3 6 5 8 7
21 43 6 5 8.7
4 3 27 85 6
3412785 6 o
3248 76 5
4 3 21817 6 5
: 6 7 8 5 2 3 4
5 6 781 2 3 4
58 7 26 43
6 5 87 21 4 3
8 5 6 3 47 2
7 85 6 3 41 2 76 5 4 3 2 8
8 7 6 5 4 3 2 1

L is the latin square representing 2-group of order 8 and M is a latin square of
order 7. By Theorem 3.2, we can obtain a critical set C(L) of L as follows.

C(L) C(M)
123 456 7 R
214365

4327 5
34127 5

324 7
4321 6 7 5 2 3
56 7 123

5 2 6
6 5 2 1 s 3 x
7 5 3 1
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Corresponding to C(L) we expect C(M) is a critical set of M. This is a result of
the following theorem.

Theorem 3.3 Let L be a latin square of order 2™ representing 2-group and C(L) be
the critical set of L constructed as in Theorem 3.2. Let M be the latin square obtained
Jrom L by using a compression as explained above. Then C(M) = {(i,5; M(i,5))i,j €
{1,2,...,2" =1}, and (i+ 1,5+ L; L+ 1,5+ 1)) € C(L)} is a critical set of M.

Proof. Since C(L) is a critical set of L, by construction it is easy to see that
C(M) can be completed to M and also the completion is unique. Now we claim that
removing any entry of C(M) will destroy this property. First, if an entry (7, 7; u) of
C(M) not in diagonal is removed, correspondingly an entry in C(L) not in the first
row is removed. By the fact that C(L)\{(i + 1,5 + 1; L(i + 1,5 + 1))} can not be
completed uniquely, C(M)\{(Z, 7; u} can not be completed uniquely either. Finally, if
we remove any entry (i, ¢; z) of C(M), then since M determines a Steiner quasigroup
(M, ) there exists a 3 x 3 subsquare of M determined by x and 2", which intersects
C(M) at exactly one entry (z,2";z * 2"). This implies that C(M)\{(3,%;z)} is not
uniquely completable. A minimal critical set of a latin square of order 3 contains at
least 2 entries. Therefore we have the proof. &

By direct counting, we obtain the following result for the size of the maximal
critical sets.

Cordllary 3.4 The mazimal critical set of latin squares of order 2" — 1 contains
at least 4™ — 3" — 2°+1 1 3 elements.
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I o1 l
Type1(1<z <n) Type2 (1 <z <n) Type3 (1< z <'n)
The Noncompletable Partial Latain Squares of Side n with n Nonempty Cells.
1]--.Ins n _ﬂ
n-2{n-1 | .
n-1|n-2 T .
n-3 IT
n-2|n-1 2|3
n-1 | n—2 3f2
Type 4 (n 2 3) Type 5 (n 2> 3) Type 6 (n 2 3)
s - 1]
n—2 t n~1 . .
n-2 : '
n—1 n3 IT
n-2 n-1 213
n—1 | n-2 412
Type 7 (n 2> 4) Type 8 (n > 4) Type 9 (n 2 4)
1] ]ns 1 1]
n-2 | n~-1 . .
2 : .
1l n-3 [T
1 n2 n—1 2|3
n-2 n-l1 415

Type 10 (n 2 5)

Type 11 (n 2 5)

Type 12 (n 2 5)

The Noncompletable Partial Latin Squares of Side n with n + 1 Nonempty Cells.
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